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Abstract. Solving system of nonlinear equations is one of the most important prob-
lems in numerical analysis. Optimization problems can often be transformed into the
equation F (x) = 0 with a nonsmooth function F , e.g. nonlinear complementarity
problem or variational inequality problem. We consider some modifications of a gen-
eralized Newton method using some subdifferential (first of all B-differential) and
based on some rules of quadrature. We use these algorithms for solving unconstrained
optimization problems, in which the objective function has not differentiable gradient.
Such problems can appear in optimization as subproblems. The proposed methods
are locally and at least superlinearly convergent under mild conditions imposed on
the gradient of the objective function. Finally, we present results of numerical tests.
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1. Introduction

We consider nonlinear unconstrained programming problem

min f(x), x ∈ D ⊂ Rn (1)

where f : D ⊂ Rn → R (D is an open convex set) is assumed to be only LC1 but not
C2. The LC1 property means that the objective function f is continuously differen-
tiable and its gradient ∇f is only locally Lipschitzian (in older papers LC1 functions
were also called C1,1 functions). If f is LC1, then (1) is called an unconstrained LC1

optimization problem.
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The second-order differentiability is the property, which may not hold for some
problems. In effect, proposed methods could be apply more often than only for solving
equations which come from the reformulation of nonlinear complementarity problems
or variational inequalities. The augmented Lagrangian of a twice smooth nonlinear
programming problem is a LC1 function ([17]). Such functions and problems were
discussed in [15]. Because really in many problems functions don’t possess a sufficient
degree of smoothness, algorithms for solving nondifferentiable unconstrained prob-
lems can be important tools to solve them. The efficient Newton-like methods for
solving some optimization problems with nonsmooth gradient were introduced for
LC1 optimization problem e.g. in [16, 6]. In turn, an interesting construction of the
unconstrained optimization problem with the objective function, which may not be
twice differentiable, with usage of penalty functions or Lagrange multiplier functions
was presented in [4, 5].

As is well-known, finding the solution of problem (1) is equivalent to solving of
nonsmooth equation F (x) = 0, where function F is a gradient of f (F = ∇f). The
generalized Jacobian-based Newton method is one of the standard methods for solving
nonsmooth equations. Methods of this class were introduced e.g. in [17, 14, 19, 7] and
have superlinear convergence. The basic form of the method is defined by

x(k+1) = x(k) − (V (k))−1F
(

x(k)
)

, k = 0, 1, ... (2)

where V (k) is taken from some subdifferential of F at x(k). This subdiffrential may
be the Clarke generalized Jacobian (Qi and Sun [17]), the B-differential (Qi [14]),
the b-differential (Sun and Han [19]) and the ∗-differential (Gao [7]). Naturally, the
increment x(k+1)−x(k) can be obtained as the solution of a linear system with matrix
V (k) by any iterative or direct method.

Some new variants of classic Newton’s method for solving smooth equations, based
on various quadrature rules, were proposed in [2, 3]. It was proved, that these methods
have local and quadratic convergence for a continuously differentiable function F .
Some algorithms were extended in [20] to the nonsmooth case.

The paper is organized as follows. In Section 2, we recall fundamental results for
the generalized Jacobian, various subdifferentials and semismoothness. Some new ver-
sions of the generalized Newton method for solving unconstrained LC1 optimization
problem and the convergence analysis are studied in Section 3. In Section 4, we give
some numerical examples.

2. Preliminaries

Let F : Rn → Rn be a locally Lipschitz function and fi : R
n → R be the i-th com-

ponent of F for i = 1, ..., n. According to Rademacher’s theorem, the local Lipschitz
continuity of F implies that F is differentiable almost everywhere. Let DF denotes
the set of points at which F is differentiable and JF (x) - the usual Jacobian matrix
of partial derivatives of F at x.
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Then the set

∂BF (x) =

{

lim
xi→x

JF (xi) , xi ∈ DF

}

, (3)

is called the B-differential (the Bouligand subdifferential) of F at x. If all elements of
∂BF (x) are nonsingular, then F is called BD-regular at x∗. The generalized Jacobian
of F at x in the sense of Clarke [1] is the convex hull of the B-differential i.e.

∂F (x) = conv∂BF (x), (4)

In turn, the following set

∂bF (x) = ∂Bf1(x)× ...× ∂Bfn(x) (5)

is called the b-differential of F at x ([19]). And the ∗-differential ∂∗F (x) introduced
in [7] is a non-empty bounded set for each x such that

∂∗F (x) ⊂ ∂f1(x)× ...× ∂fn(x), (6)

where ∂fi(x) is the Clarke generalized gradient of fi at x.
It is well-known that if n = 1, then ∂F (x) reduces to the Clarke generalized

gradient of F at x and ∂bF (x) = ∂BF (x). Moreover, ∂F (x), ∂BF (x) and ∂bF (x) are
∗-differentials for a locally Lipschitz function [7].

The notion of semismoothness was originally introduced for functionals by Mifflin
[9]. The following definition is taken from [17]. A function F is semismooth at a point
x if F is locally Lipschitzian at x and

lim
V ∈∂F (x+th′),h′→h,t↓0

V h′. (7)

exists for any h ∈ Rn.
Semismoothness implies some important properties for the convergence analysis of

methods in nonsmooth optimization.

Lemma 2.1 (Lemma 2.2, [17]). Suppose that F ′(x;h) exists for any h at x. Then:
(i) F ′(x; ·) is Lipschitzian;
(ii) for any h, there exists a V ∈ ∂F (x) such that

F ′(x;h) = V h. (8)

Proposition 2.2 (Theorem 2.3, [17]). The following statements are equivalent:
(i) F is semismooth at x;
(ii) for V ∈ ∂F (x+ h), h → 0,

V h− F ′(x;h) = o (‖h‖) ; (9)

(iii)

lim
h→0

F ′(x+ h;h)− F ′(x;h)

‖h‖ = 0. (10)
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Remark 2.3. In the original version of the statement (iii) in the above proposition
there is the assumption x+ h ∈ DF . Without loss of generality, this assumption may
be removed, because the proof is analogous. Moreover, it follows from (10) that if F
has a strong Fréchet derivative at x, then F is semismooth at x.

If for any V ∈ ∂F (x+ h), as h → 0,

V h− F ′ (x, h) = O
(

‖h‖1+p
)

, (11)

where 0 < p ≤ 1, then we say that F is p-order semismooth at x. Clearly, p-order
semismoothness implies semismoothness.

Qi and Sun [17] remarked that if F is semismooth at x, then for any h → 0,

F (x+ h)− F (x)− F ′(x;h) = o (‖h‖) , (12)

and if F is p-order semismooth at x, then for any h → 0,

F (x+ h)− F (x)− F ′(x;h) = O
(

‖h‖1+p
)

. (13)

If p = 1 then the function F is called strongly semismooth ([11]).

Lemma 2.4 (Lemma 2.6, [14]). If F is BD-regular at x, then there are a neighborhood
N of x and a constant C > 0 such that for any y ∈ N and V ∈ ∂BF (y), V is
nonsingular and

∥

∥V −1
∥

∥ ≤ C. (14)

If F is also semismooth at y ∈ N , then, for any h ∈ Rn,

‖h‖ ≤ C ‖F ′ (y;h)‖ . (15)

Instead of semismoothness we can use the following more general assumption on
the function F :

Assumption A. Assume that function F is Lipschitz continuous. We say that F
satisfies A at x if for any y ∈ Rn and any Vy ∈ ∂BF (y), the following equality holds:

F (y)− F (x) = Vy (y − x) + o (‖y − x‖) . (16)

Moreover, we say that F satisfies A at x with degree p if F is Lipschitz continuous
and the following equality holds:

F (y)− F (x) = Vy (y − x) +O
(

‖y − x‖1+p
)

. (17)

Remark 2.5. It is easy to check that if F is BD-regular at x and satisfies assumption
A at x, then there exist a neighborhood N of x and a constant C > 0 such that for
any y ∈ N and V ∈ ∂BF (y),

‖y − x‖ ≤ C ‖Vy (y − x)‖ . (18)

There are at least three classes of functions that satisfied Assumption A [13]. Beside
semismoothness, the second-order C-differentiability (see [15]) and H-differentiability
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(see [8]) are properties that imply A. Moreover, it is easy to prove that the p-order
semismoothness implies A with degree p.

Notation: Throughout the whole paper S(x, r) denotes an open ball in Rn with
center x and radius r.

3. Quadrature-based generalized Newton methods

In this section we consider some versions of the generalized Newton method, which
were constructed using some rules deriving from quadratures for numerical integra-
tion. Using methods from [20] based on ideas from [2], we apply analogous methods
for solving unconstrained optimization problems. We prove a local convergence theo-
rem for one of the methods using iteration matrices taken from the B-differential of
F .

Let x(0) ∈ Rn be some approximation to solution of (1). To obtain x(k+1) from kth
approximation x(k) by means of the trapezoidal generalized Newton method we use
the following formula

x(k+1) = x(k) − 2[V (k)
x + V (k)

z ]−1F
(

x(k)
)

, k = 0, 1, ... (19)

where V
(k)
x and V

(k)
z are taken form some subdifferentials of F at x(k) and z(k),

respectively, and z(k) = x(k)−(V
(k)
x )−1F (x(k)). Using the midpoint rule, the midpoint

generalized Newton method is obtained as

x(k+1) = x(k) − (V (k)
xz )−1F

(

x(k)
)

, k = 0, 1, ... (20)

where V
(k)
xz is an element of some subdifferential of F at 1

2 (x
(k) + z(k)) and z(k) =

x(k) − (V
(k)
x )−1F (x(k)), as previously. Note that both formulas (19) and (20) use

arithmetic means: of V
(k)
x and V

(k)
z in (19) and of x(k) and z(k) in (20).

Gao suggested in [7] that different ∗-differentials ∂∗F (x) generate different super-
linearly convergent Newton methods based on the iteration (2). In this way we can
obtain other methods from (19) and (20).

To prove convergence results for method (20) with the B-differential, we need some
helpful lemma.

Lemma 3.1. Let F be BD-regular at x∗. Then the function

G(x) = x− (V̄x)
−1F (x), (21)

where V̄x ∈ ∂BF (x− 1
2 (Vx)

−1F (x)) and Vx ∈ ∂BF (x), is well-defined in a neighborhood
of x∗.

Proof. Since F is BD-regular at x∗, then based on Lemma 2.4 there exist a constant
β > 0 and a neighborhood N of x∗ such that Vx is nonsingular and

∥

∥V −1
x

∥

∥ ≤ β for
any x ∈ N and Vx ∈ ∂BF (x).
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Let ε be such that 0 < ε < 1/2β. First, we claim that there is Vx∗ ∈ ∂BF (x∗) such
that

‖Vx − Vx∗‖ < ε (22)

for any x ∈ S(x∗, δ) and Vx ∈ ∂BF (x).
If the above inequality is not true, then there is a sequence

{

y(k) : y(k) ∈ DF

}

con-
vergent to x∗ such that

‖JF (y(k))− Vx∗‖ ≥ ε for all Vx∗ ∈ ∂BF (x∗) . (23)

By passing to a subsequence, we may assume that
{

JF
(

y(k)
)}

converges to Vx∗ ∈
∂BF (x∗), which contradicts the above inequality.

Now, we consider z = x − 1
2 (Vx)

−1F (x), where Vx ∈ ∂BF (x). By the local con-
vergence of the generalized Newton method (see [14]), it can be guaranteed that
z ∈ S(x∗, δ) and (22) holds. So, using the Banach perturbation lemma (see [10]), we
obtain that V̄x is nonsingular and

‖(V̄x)
−1‖ = ‖(Vz)

−1‖ = ‖[Vx∗ + (Vz − Vx∗)]−1‖ (24)

≤ ‖(Vx∗)−1‖
1− ‖(Vx∗)−1‖‖Vz − Vx∗‖ ≤ β

1− βε
< 2β. (25)

for x ∈ S(x∗, δ).
So, the function G(x) is well-defined in S(x∗, δ). ⊓⊔

Theorem 3.2. Suppose that F satisfies assumption A at x∗, F is BD-regular at x∗

and ‖Vx∗‖ ≤ γ for all Vx∗ ∈ ∂BF (x∗). Then there exists a neighborhood of x∗ such
that for any starting point x(0) belonging to this neighborhood, the sequence

{

x(k)
}

generated by the method (20) with the B-differential converges superlinearly to x∗.
Moreover, if F (x(k)) 6= 0 for all k, then the norm of F decreases superlinearly in
a neighborhood of x∗, i.e.

lim
k→∞

∥

∥F (x(k+1))
∥

∥

∥

∥F (x(k))
∥

∥

= 0. (26)

If F satisfies assumption A with degree 1 at x∗, then the convergence is quadratic.

Proof. By Lemmas 2.4 and 3.1, the iterative schema (20) is well-defined in a neigh-
borhood of x∗ for the first step k = 0. Further, if we consider z = x − 1

2 (Vx)
−1F (x),

where Vx ∈ ∂BF (x), then it can be guaranteed that z ∈ S(x∗, δ) (like in Lemma 3.1)
and

‖x(k+1) − x∗‖ = ‖x(k) − (V (k)
xz )−1F (x(k))− x∗‖

= ‖(V (k)
xz )−1‖‖F (x(k))− F (x∗)− V (k)

xz (x(k) − x∗)‖ = o(‖x(k) − x∗‖). (27)

The last equality is due to Lemma 2.4 and Assumption A. This shows that the se-
quence {x(k)} is superlinearly convergent to x∗.

Now, we prove (26). By Lemma 2.4, there are a scalar C and δ1 > 0 such that if
x ∈ S(x∗, δ1) and V ∈ ∂BF (x) then V is nonsingular and (14) holds. By Assumption
A, for any α ∈ (0, 1), there is a δ2 ∈ (0, δ1) such that if x ∈ S(x∗, δ2),



New algorithms for solving unconstrained optimization problems. . . 13

‖F (x)− V (x− x∗)‖ ≤ α ‖x− x∗‖ . (28)

By (27) there is a δ ∈ (0, δ2) such that if x(k) ∈ S(x∗, δ), then

∥

∥

∥
x(k+1) − x∗

∥

∥

∥
≤ α

∥

∥

∥
x(k) − x∗

∥

∥

∥
. (29)

Since
{

x(k)
}

converges to x∗, there is an integer kδ such that
∥

∥x(k) − x∗
∥

∥ ≤ δ for

all k ≥ kδ. By (29),
∥

∥x(k+1) − x∗∥
∥ ≤ δ ≤ δ2. Furthermore, (22) implies

∥

∥

∥
V

(k+1)
xz

∥

∥

∥
≤

ε+ ‖Vx∗‖ ≤ ε+ γ. By (28) and (29) we have

‖F (x(k+1))‖ ≤ ‖V (k+1)
xz (x(k+1) − x∗)‖+ α‖x(k+1) − x∗‖

≤ (ε+ γ + α)‖x(k+1) − x∗‖ ≤ α(ε+ γ + α)‖x(k) − x∗‖. (30)

By (20), (29) and (14) we obtain

∥

∥

∥
x(k) − x∗

∥

∥

∥
≤

∥

∥

∥
x(k+1) − x(k)

∥

∥

∥
+
∥

∥

∥
x(k+1) − x∗

∥

∥

∥

≤
∥

∥

∥
(V (k)

xz )−1F (x(k))
∥

∥

∥
+ α

∥

∥

∥
x(k) − x∗

∥

∥

∥

≤ C
∥

∥

∥
F (x(k))

∥

∥

∥
+ α

∥

∥

∥
x(k) − x∗

∥

∥

∥
.

So,
∥

∥

∥
x(k) − x∗

∥

∥

∥
≤ C

1− α

∥

∥

∥
F (x(k))

∥

∥

∥
. (31)

By (30) and (31),

∥

∥

∥
F (x(k+1))

∥

∥

∥
≤ α(ε+ γ + α)

∥

∥

∥
x(k) − x∗

∥

∥

∥

≤ Cα(ε+ γ + α)

1− α

∥

∥

∥
F (x(k))

∥

∥

∥
.

Since F (x(k)) 6= 0 for all k and α may be arbitrarily small as k tends to infinity, we
have (26).

If the function F satisfies A with degree 1, then we have

F (x) − F (x∗)− V (x − x∗) = O(‖x− x∗‖2). (32)

Hence the sequence
{

x(k)
}

defined by (20) with the B-differential is quadratically
convergent to x∗. ⊓⊔

Remark 3.3. The convergence of the other variants of the generalized Newton method
may be proved in a similar way.
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4. Numerical tests and conclusions

The method proposed here can be applied to solve the following constrained opti-
mization problem

{

min
x∈Rn

h(x)

gi(x) ≤ 0, i = 1, ...,m,
(33)

where h and gi are twice differentiable. Similar as in [5], we can construct an un-
constrained optimization problem (1) with use the Di Pillo-Grippo type Lagrange
multiplier function f : Rn+m → R in the form

f(x, µ, C) = (34)

h(x) +
m
∑

i=1

(max{0, µi + Cgi(x)})2 − µ2
i

2C
+ C‖P (x)[∇h(x) +

m
∑

i=1

µi∇gi(x)]‖2,

where µ = (µ1, ..., µm) are Lagrange multipliers, P (x) is a m× n matrix and C > 0
is a constant. If h and gi are twice continuosly differentiable, f may not be twice
differentiable at (x, µ, C) with µi + Cgi(x) = 0, but it has LC1 gradient and satisfies
Assumption A at such points.

We use a constant matrix P as P (x) and large enough parameter C to ensure the
equivalence problems (33) and (34), see [12].

To illustrate a performance of the considered methods (19) and (20), we present
numerical results of computational tests. Calculations were performed in Dev-C++ in
double-precision arithmetic. We declare a failure of the algorithm when the stopping
criterion

∥

∥x(k+1) − x(k)
∥

∥

2
≤ 10−10 or

∥

∥F
(

x(k)
)∥

∥

2
≤ 10−12 is not reached after 1000

iterations (‖·‖2 denotes the Euclidean norm). Tables summarize the results in terms
of the number of iterations N for miscellaneous starting points x(0). A symbol “×”
denotes that the test failed.

We consider problems (33) with the following functions (examples were taken
from [18]):

Example 1.







f(x) = (x1 − 2)2 + (x2 − 1)2

g1(x) = x2
1 − x2

g2(x) = x2
2 − x1

Example 2.



















f(x) = − 1
27

√
3
(9− (x1 − 3)2)x3

2

g1(x) = −( 1√
3
x1 − x2)

g2(x) = −(x1 +
√
3x2)

g3(x) = −(6− x1 −
√
3x2)
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Table 1
Numerical results for Problem 1

initial data Method
x(0) µ C midpoint trapezoid classic

(0.5, 0.5) 1 10 6 9 13
(0.5, 0.5) 2 10 7 10 15
(1, 1) 1 10 8 11 17
(1, 1) 2 10 11 14 21
(1, 1) 1 20 12 18 23
(5, 5) 2 10 × 16 ×
(5, 5) 2 20 11 15 22
(5, 5) 2 50 10 17 21
(10, 10) 2 20 14 19 ×
(−10,−10) 1 20 × 28 ×

Table 2
Numerical results for Problem 2

initial data Method

x(0) µ C midpoint trapezoid classic

(2, 0.5) (1, 1, 1) 10 7 11 15
(2, 0.5) (2, 2, 2) 10 8 10 15
(4, 1) (1, 1, 1) 10 8 11 15
(4, 1) (2, 2, 2) 10 7 11 ×
(4, 2) (2, 2, 2) 20 × 12 17
(4, 2) (3, 3, 3) 20 8 13 ×
(6, 1.5) (2, 2, 2) 20 6 9 13
(6, 1.5) (3, 3, 3) 20 × 14 ×

We presented some new versions of the generalized Newton algorithms for solving
unconstrained LC1 optimization problems. First, we proved that the sequence gen-
erated by the midpoint variant of the method with the B-differential is locally and
superlinearly convergent to the solution of problem (1) under mild assumptions. Some
stronger condition imposed on the equation guarantees that the method has quadratic
convergence.

The performance of the methods is evaluated first of all in the terms of the num-
ber of iterations required. The important conclusion is that the generalized Newton
methods based on quadrature rules allow us to find the solutions of nonsmooth equa-
tions usually more efficiently than the classic version. Really, the computational cost
of one step of the quadrature-based method is double that for one step of the classic
method, because two matrices are required. Comparing the trapezoidal variant with
the midpoint one, the convergence may be, roughly speaking, quite weak (see Table

2). This is not surprising if we recall that we use the arithmetic mean of V
(k)
x and V

(k)
z

in the trapezoidal version and the arithmetic mean of x(k) and z(k) in the midpoint
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one. So, the efficiency of the generalized Newton method depends on the successive
iteration points rather than on matrices taken from the subdifferential.

Moreover, behavior of the values of functions F at succesive iteration points in-
dicates that

∥

∥F (x(k+1))
∥

∥ /
∥

∥F (x(k))
∥

∥ converges to 0 as k → ∞, which was proved
in Theorem 5. However, not all of the problems considered above were solved with
a satisfactorily convergence.
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